

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-1, January 2017

 5 www.ijeas.org

Abstract— One of the exciting elements of scrolling-shooter

games is finding the movement pattern of enemies, and

predicting the direction in which they will move to eliminate

them. However, if players identify all the movement patterns of

the enemies, they will easily lose interest in game play. In the

end, in today’s game ecosystem, which has a very short life-cycle,

players who feel weary will look for new games. To address this

problem, this paper presents a genetic algorithm based

technique for dynamically generating movement patterns of

enemy aircrafts. The proposed method evolves the movement

patterns designed by a game designer in the early stage to the

more complex form of movement according to the player 's

ability and vice versa.

Index Terms— Game AI, Genetic Algorithm,

PCG(Procedural Content Generation), Scrolling-Shooter Game.

I. INTRODUCTION

Game designer Greg Costikyan said that the game is a

decision making with enough information, and the player is

going to go beyond the obstacles in front of him to achieve his

goal [1]. That is, players play the game to reach the goal

beyond the obstacle of the game of their choice. There, the

game chosen by the player must provide the resources that the

player can manage, the goal to achieve, and the obstacles that

impede the achievement of the goal.

Players play the game repeatedly to achieve a given goal,

and in the process, they repeat a pattern of obstacles or

experiences. If the players are experienced and can gradually

predict the near future, they will no longer be nervous [2].

When a player adapts to the game, he will no longer be

interested in the game and will look for another interesting

game. Continuing to create an unforeseeable situation for the

player will reduce the same repeated experiences and prevent

the game from being bored.

There are a few ways to create a situation that prevents

players from predicting. First, the game developers should

constantly design and update new contents. However, this

method requires a lot of time and cost, and it cannot take all

the characteristics of various players into account. The

second way is to use random numbers for the creation of

gameplay elements. This method is easy to implement

because the generation algorithm is relatively simple.

However, on the other hand, there is a disadvantage that game

developers can not predict the contents. As a result, there is a

limit to the amount and diversity of content that game

developers can provide with the above method. One of the

Chang-Hoon Park, Department of Digital Media, Dong-eui University,

Busan, Korea.

Jinseok Seo, Division of Digital Contents Technology, Dong-eui

University, Busan, Korea. (*corresponding author)

This work was supported by the ICT R&D program of MSIP/IITP

(I5501-16-1016, Instant 3D based Join & Joy content technology).

most actively studied areas to solve this problem is the

Procedural Content Generation (PCG). PCG algorithms can

generate game content dynamically by algorithms at runtime.

In this research, a sort of PCG technique is proposed to

diversify the patterns of enemy aircrafts’ movements in

scrolling-shooter games. This paper presents a genetic based

AI (Artificial Intelligence) algorithm that collects data about a

player's gameplay results and enemies’ movements, analyzes

the data, and provides new movement patterns of enemies

when the next level starts reflecting the analyzed results. The

proposed method evolves the movement patterns designed by

a game designer in the early stage to the more complex form

of movement according to the player’s ability and vice versa.

II. RELATED WORKS

It is quite natural that it takes a lot of time and effort to

produce rich and high-quality game contents that meet the

needs of various users. In addition, the larger the game

market, the more demand for content will increase and the

greater the scalability of content. Recently, procedural

content generation (PCG) techniques using various kinds of

algorithms have been studied to solve this problem.

The primary purpose of PCG is automating or helping to

create various content within a game. However, there are

many practical difficulties to apply PCG to a game. An

example of a typical difficulty is that the content generated

using PCG should be artistically complete, satisfy the

requirements of the artist, and be interesting to users at the

same time.

At Delft University in the Netherlands, for the first time, the

PCG field was investigated and summarized in depth [3].

They divided the game content into 6 layers depending on the

depth of the object to which an algorithm applies. These

layers have low-level contents such as textures and sounds as

you go down the content layer pyramid, and more abstract

contents such as maps, environments, stories, and

leaderboards is placed on top. Based on these layers, they

investigate layers the existing PCG techniques are applied to,

and provide guidelines for using the PCG technique. In

addition, this research concludes that the PCG technique

applied to one layer can be applied to other layers as well. In

this research, we tried to apply the genetic algorithm used in

various fields to the movement pattern of enemy aircrafts in a

scrolling-shooter game.

Shaker et al. [4][5] conducted researches to automatically

generate various types of platform for the optimal experience

of game players in the "Infinite Mario Bros" game released as

open source. They defined the elements representing the

game level and the features of a player’s gameplay as

variables and predicted the user 's game experience using

sequence mining and neural network. An evolutionary

Genetic Algorithm-Based Movement Patterns for

Scrolling-Shooter Games

Chang-Hoon Park, Jinseok Seo

Genetic Algorithm-Based Movement Patterns for Scrolling-Shooter Games

 6 www.ijeas.org

algorithm was used to find level designs that maximize a

desired effect among challenge, engagements, and frustration.

ITU's Liapis et al.[6] automatically created the mesh

models for space crafts by applying the FI-2Pop

(Feasible-Infeasible Two-Population) genetic algorithm to

the CPPN-NEAT (Compositional Pattern Producing Network

- NeuroEvolution of Augmenting Topologies) algorithm. In

order to define the function for evaluating the generated mesh,

symmetry, weight in the bottom half, weight in the middle

third along the x-axis, weight in the middle third along the

y-axis, containment within a forward-point triangles,

simplicity, and jaggedness are quantified.

Togelius et al. proposed a method for automatically

evolving tracks in racing games [7] and a method for

automatically generating maps in a real-time strategy game,

Starcraft [8]. In addition to above researches, we can find

many PCG algorithms applied to various games

[9][10][11][12]. As can be seen from most of the researches,

the commonly used methods for automatically generating

content in games are based on various artificial intelligence

techniques. In the future, as the game industry develops and

virtual reality contents become popular, more PCG

algorithms based on artificial intelligence techniques are

expected to be applied.

III. PCG FOR SCROLLING-SHOOTER GAMES

A. Test Platform: “Xhootings” Game

Figure 1: Screenshots of "Xhootings" game

In order to verify the proposed PCG algorithm, we

developed a simple scrolling-shooter game called

"Xhootings" (Fig. 1). When the game starts, the enemy

airplane, which is infinitely generated at intervals of 1.3

seconds, moves down, and the objective of this game is to

attack these enemies by shooting bullets. The game collects

various data needed for evolution as the user plays the game.

When the game is started, the user deals with enemy airplanes

which are moving with patterns created by a game designer.

The first level starts with 6 types of basic movement patterns.

At each level, users play until they kill 30 enemies, which are

destroyed when they are hit three times by bullets. The

proposed PCG algorithm collects four types of data during

game play, which includes the user's play time, the number of

player’s airplanes used by the user during the play, the

number of times each enemy has destroyed the player’s

aircraft, the number of times each enemy has been destroyed

by the user.

B. Evolution Algorithm

Figure 2: Overall process of our evolution algorithm

When the user reaches a given goal (to kill 30 enemies) and

ends one level, the PCG system performs a chromosome

evolutionary algorithm to create new movement patterns of

enemies by using the collected data. The overall process of

our evolution algorithm is depicted in Fig. 2. The

chromosome evolution process proceeds in three stages:

evaluation, crossover, and mutation.

In the evaluation stage, the user’s score and the fitness

function values of all types of enemies are calculated based on

the data collected during the previous game play. The player's

score determines the progress of the evolutionary algorithm

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-1, January 2017

 7 www.ijeas.org

and the order in which the chromosomes are sorted, and the

enemies’ fitness function values are used to choose a pair of

chromosomes for the crossover stage. The crossover stage

proceeds until all the chromosomes of one generation are

generated. Since the number of chromosomes used in this

study is 6, crossover occurs up to 3 times. When the

crossover stage is finished, the next step, mutation stage,

proceeds. When the mutation process is complete, the newly

created 6 kinds of enemies appear at the next level.

1) Encoding Chromosome

The original genetic algorithm encodes the gene

chromosomal information into a bit stream, but in this study, it

is encoded as an array of real numbers because the data size

required for the operation is not only small but also the

calculation process is very simple.

Figure 3: An Encoded Chromosome

The chromosome of the enemy represents the total of 5

kinds of information by genes, including moving direction,

delay time of bullet launch, speed of movement, weapon type,

and retreat position of an enemy. In the case of the direction

of movement, for example, each gene is represented by -1, 0,

or 1, which indicates the direction in which the enemy moves

while falling down (Table 1). In the case of the chromosome

in Fig. 3, the enemy continues to move to the right and falls

down.
Table 1: Values for Gens for Movement Direction

Value Meaning

1 move right

0 in place

-1 move left

2) Evaluation

As mentioned above, in the evaluation stage, the fitness

function value of each enemy is calculated together with the

score of the user's play. First, the score for the user's play is

calculated by taking the number of airplanes used by the user

and the play time as parameters. Naturally, we defined the

score function so that the more plyer’s aircrafts are used and

the longer the play time, the lower the score (Equation 1).

In this research, if the player score is less than 30, the

evolutionary algorithm is not performed. If the score is

greater than 30, the evolution direction is changed differently

by comparing the score of the current level with that of the

previous level. If the player's score improves, the enemy

evolves more strongly and vice versa.

The fitness value is calculated based on the number of

times each enemy has destroyed the player's aircraft and the

number of times the enemy has been shot down by the player

during play (Equation 2).

The chromosomes whose fitness values have been

calculated are sorted in different order according to the

evolution direction determined by the player's play score.

The reason is that in order to evolve the enemy to be stronger,

the chromosomes are sorted in descending order, and in the

opposite case, they are sorted in ascending order so as to

differentiate the probability of selecting a pair of

chromosomes in the next step of crossover.

3) Crossover

In this research, one generation consists of 6 chromosomes.

Therefore, in this stage, 6 new chromosomes for a new

generation, whether the crossover operation is performed or

not, are generated. We set the probability of applying the

crossover operation to 75%.

Figure 4: An Example of the Crossover Operation

Traditional genetic algorithms arbitrarily select the point at

which the chromosome breaks (crossing point), and exchange

all the genes behind this point on the chromosome. However,

in this research, we proposed an expedient encoding scheme,

so our PCG algorithm chooses randomly both starting and

ending positions and exchanges the genes between them.

4) Mutation

In the conventional genetic algorithm to find the optimal

solution, the mutation rate of each gene is usually set to 0.1%.

However, in this research, an anomalous form of mutation

algorithm was used in consideration of the characteristics our

proposed encoding method.

First, the mutation probability of each chromosome was set

to be 25%. Next, as in the crossover operation above, the

starting and ending positions of the chromosome to which the

mutation operation would be applied were arbitrarily

determined. In addition, since the meanings of each gene are

very different from each other, the mutation method for each

gene is also designed differently.

Table 2: Mutation Range of Variable Types of Genes

Gene Type Variation Range Limit Range

direction -1, 0, 1 -1, 0, 1

firing cool time -0.3 ~ 0.3 0.6 ~ 1.0

speed -3 ~ 3 3 ~ 7

weapon type -1, 0, 1 0, 1, 2

retreat pos -4 ~ 4 -1or 5 ~ 11

Genetic Algorithm-Based Movement Patterns for Scrolling-Shooter Games

 8 www.ijeas.org

Table 2 summarizes the variation range and limit range of

each gene. For example, the range of meaningful values of

the gene for “direction” of movement is 0.6 to 1.0, and the

range of values that can be varied in the variation calculation

is any value between -0.3 and 0.3. If the mutation results out

of the "limit range", a compensation operation is also

performed so that it remains within a meaningful "limit

range.” This process is shown in Fig. 5 as an algorithm, and

the compensation operation is designed differently for each

gene so that it is mutated to a meaningful value.

Figure 5: Algorithm for the Mutation and Compensation

5) New Generation

Figure 6: Raw Data of 1st Generation

Figure 7: Raw Data of 2nd Generation

As mentioned above, in this research, we used a simple

modified form of the genetic algorithm without using the

traditional genetic algorithm designed to find the optimal

solution. As a result, even if only one cycle of evolution

algorithm is applied, it is possible to visually discover the

creation of an enemy that shows a new shape e of movement.

Fig. 6 and Fig. 7 show raw data representing the

chromosomes of the second and third generations,

respectively.

IV. RESULTS

In order to verify how our proposed PCG algorithm

generates effective movement patterns, we conducted

experiments with two users. One is very experienced in

scrolling-shooter games and the other is very inexperienced.

It is very easy to find the enemy that changes its movement

pattern even after the end of one level, but the evolved results

to the tenth generation are summarized in Fig. 8 to show more

dramatic results.

Figure 8: (a) Initial patterns, (b) patterns evolved into complex forms, (c)

patterns evolved into simple forms

Experienced users acquire the ability to quickly adapt and

evade even the enemy moving in a complex pattern. Thus, as

the evolution proceeds over and over again, more complex

patterns appear and the game becomes more difficult. On the

other hand, inexperienced users take a long time to adapt to a

slightly modified pattern. In this case, our algorithm has a

higher probability of selecting chromosomes with lower

fitness values, so that even if the same number of evolution is

repeated starting from the same initial patterns, more simple

patterns appear compared to experienced users.

V. CONCLUSION

In this paper, we proposed a novel movement pattern

generation method for scrolling-shooter games using genetic

algorithm. The proposed algorithm generates new movement

patterns according to the user 's play results. In other words, it

was implemented to give more complex missions to users who

are clearing too easily, and to give easier missions to

inexperienced users.

As can be seen from the above results, applying PCG

algorithms to the game makes it possible to generate contents

with the difficulty level suitable for users in real time. In

addition, game designers can easily create and test various

contents in advance. Although PCG algorithms is not yet

capable of replacing all the contents that humans design, it is

expected that various PCG algorithms will be able to replace

more parts in the near future.

ACKNOWLEDGMENT

This work was supported by the ICT R&D program of

MSIP/IITP (I5501-16-1016, Instant 3D based Join & Joy

content technology).

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-1, January 2017

 9 www.ijeas.org

REFERENCES

[1] G. Costikyan, “I Have No Words & I Must Design.” Interactive Fantasy

#2, 1994.

[2] C. Jeong, J. Ham, and J. Park, “Applying of SOM for Recognition to

Tension and Relaxation in a Scrolling-Shooter Game,” Proceedings of

the Korean Society of Computer Information Conference 16(2),

pp.169-172, 2009.

[3] H. Hendriks, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural

Content Generation for Games: A Survey,” ACM Transactions on

Multimedia Computing, Communications and Applications, Feb.,

2011.

[4] N. Shaker, G. N. Yannakakis and J. Togelius. Crowd- Sourcing the

Aesthetics of Platform Games. IEEE Tran- sactions on Computational

Intelligence and AI in Games, issue. 99, December, 2012.

[5] N. Shaker, G. Y. and J. Togelius. Digging deeper into platform game

level design: session size and sequential features, in Proceedings of

EvoGames: Applications of Evolutionary Computation, Lecture Notes

on Computer Science, 2012.

[6] A. Liapis, G. N. Yannakakis, and J. Togelius, Adapting Models of

Visual Aesthetics for Personalized Content Creation, IEEE

Transactions on Computational Intelli- gence and AI in Games, Special

Issue on Computatio- nal Aesthetics in Games Vol. 4, No. 3, pp.

213-228, Sep. 2012.

[7] J. Togelius, R. D. Nardi, and S. M. Lucas. Towards Au- tomatic

Personalized Content Creation for Racing Games. IEEE Symposium

on Computational Intelli- gence and Games. 2007.

[8] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Ha- gelback, and

G.N. Yannakakis. Multiobjective Explo- ration of the StarCraft Map

Space. In: Proceedings of the IEEE Conference on Computational

Intelligence and Games. 2010.

[9] C. Grappiolo, Y.-G. Cheong, J. Togelius, R. Khaled, G. N.

Yannakakis. Towards Player Adaptivity in a Serious Game for Conflict

Resolution. In the Proceedings of VS-Games 2011 Natural Interaction

and Player Satis- faction in Games Workshop. Athens, Greece. May

4-6, 2011.

[10] J. Hastings, R. K. Guha, and K. O. Stanley. Automatic content

generation in the galactic arms race video game. IEEE Transactions on

Computational Intelligence and AI in Games, 1(4):245-263, 2010.

[11] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley.

Combining Search-based Procedural Content Generation and Social

Gaming in the Petalz Video Game. In: Proceedings of the Artificial

Intelligence and Interactive Digital Entertainment Conference(AIIDE),

Menlo Park, CA. 2012.

[12] E. McDuffee and A. Pantaleev. Team Blockhead Wars: Generating

FPS Weapons in a Multiplayer Environment. FDG PCG workshop

2013.

Chang-Hoon Park received the B.S. degree in Game Engineering from

Dong-eui University, Korea, in 2016, and is currently in the M.S. course in

Digital Media in Dong-eui University. His current research interest is

artificial intelligence techniques for computer games.

 Jinseok Seo received the M.S. and Ph.D. degrees in Computer Science

and Engineering from Postech, Korea, in 2000 and 2005, respectively. Since

2005, he joined the division of digital contents technology, Dong-eui

University, Busan, Korea. His main research interests are artificial

intelligence for computer games, game engines, virtual reality, and

augmented reality.

