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Abstract— One of the exciting elements of scrolling-shooter 

games is finding the movement pattern of enemies, and 

predicting the direction in which they will move to eliminate 

them.  However, if players identify all the movement patterns of 

the enemies, they will easily lose interest in game play.  In the 

end, in today’s game ecosystem, which has a very short life-cycle, 

players who feel weary will look for new games.  To address this 

problem, this paper presents a genetic algorithm based 

technique for dynamically generating movement patterns of 

enemy aircrafts.  The proposed method evolves the movement 

patterns designed by a game designer in the early stage to the 

more complex form of movement according to the player 's 

ability and vice versa. 
 

Index Terms— Game AI, Genetic Algorithm, 

PCG(Procedural Content Generation), Scrolling-Shooter Game.  

 

I. INTRODUCTION 

Game designer Greg Costikyan said that the game is a 

decision making with enough information, and the player is 

going to go beyond the obstacles in front of him to achieve his 

goal [1].  That is, players play the game to reach the goal 

beyond the obstacle of the game of their choice. There, the 

game chosen by the player must provide the resources that the 

player can manage, the goal to achieve, and the obstacles that 

impede the achievement of the goal. 

Players play the game repeatedly to achieve a given goal, 

and in the process, they repeat a pattern of obstacles or 

experiences.  If the players are experienced and can gradually 

predict the near future, they will no longer be nervous [2].  

When a player adapts to the game, he will no longer be 

interested in the game and will look for another interesting 

game.  Continuing to create an unforeseeable situation for the 

player will reduce the same repeated experiences and prevent 

the game from being bored.   

There are a few ways to create a situation that prevents 

players from predicting.  First, the game developers should 

constantly design and update new contents.  However, this 

method requires a lot of time and cost, and it cannot take all 

the characteristics of various players into account.  The 

second way is to use random numbers for the creation of 

gameplay elements.  This method is easy to implement 

because the generation algorithm is relatively simple. 

However, on the other hand, there is a disadvantage that game 

developers can not predict the contents.  As a result, there is a 

limit to the amount and diversity of content that game 

developers can provide with the above method.  One of the  
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most actively studied areas to solve this problem is the 

Procedural Content Generation (PCG).  PCG algorithms can 

generate game content dynamically by algorithms at runtime. 

In this research, a sort of PCG technique is proposed to 

diversify the patterns of enemy aircrafts’ movements in 

scrolling-shooter games.  This paper presents a genetic based 

AI (Artificial Intelligence) algorithm that collects data about a 

player's gameplay results and enemies’ movements, analyzes 

the data, and provides new movement patterns of enemies 

when the next level starts reflecting the analyzed results.  The 

proposed method evolves the movement patterns designed by 

a game designer in the early stage to the more complex form 

of movement according to the player’s ability and vice versa. 
 

II. RELATED WORKS 

It is quite natural that it takes a lot of time and effort to 

produce rich and high-quality game contents that meet the 

needs of various users.  In addition, the larger the game 

market, the more demand for content will increase and the 

greater the scalability of content.  Recently, procedural 

content generation (PCG) techniques using various kinds of 

algorithms have been studied to solve this problem. 

The primary purpose of PCG is automating or helping to 

create various content within a game.  However, there are 

many practical difficulties to apply PCG to a game.  An 

example of a typical difficulty is that the content generated 

using PCG should be artistically complete, satisfy the 

requirements of the artist, and be interesting to users at the 

same time. 

At Delft University in the Netherlands, for the first time, the 

PCG field was investigated and summarized in depth [3].  

They divided the game content into 6 layers depending on the 

depth of the object to which an algorithm applies.  These 

layers have low-level contents such as textures and sounds as 

you go down the content layer pyramid, and more abstract 

contents such as maps, environments, stories, and 

leaderboards is placed on top.  Based on these layers, they 

investigate layers the existing PCG techniques are applied to, 

and provide guidelines for using the PCG technique.  In 

addition, this research concludes that the PCG technique 

applied to one layer can be applied to other layers as well.  In 

this research, we tried to apply the genetic algorithm used in 

various fields to the movement pattern of enemy aircrafts in a 

scrolling-shooter game. 

Shaker et al. [4][5] conducted researches to automatically 

generate various types of platform for the optimal experience 

of game players in the "Infinite Mario Bros" game released as 

open source.  They defined the elements representing the 

game level and the features of a player’s gameplay as 

variables and predicted the user 's game experience using 

sequence mining and neural network.  An evolutionary 
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algorithm was used to find level designs that maximize a 

desired effect among challenge, engagements, and frustration. 

ITU's Liapis et al.[6] automatically created the mesh 

models for space crafts by applying the FI-2Pop 

(Feasible-Infeasible Two-Population) genetic algorithm to 

the CPPN-NEAT (Compositional Pattern Producing Network 

- NeuroEvolution of Augmenting Topologies) algorithm.  In 

order to define the function for evaluating the generated mesh, 

symmetry, weight in the bottom half, weight in the middle 

third along the x-axis, weight in the middle third along the 

y-axis, containment within a forward-point triangles, 

simplicity, and jaggedness are quantified. 

Togelius et al. proposed a method for automatically 

evolving tracks in racing games [7] and a method for 

automatically generating maps in a real-time strategy game, 

Starcraft [8].  In addition to above researches, we can find 

many PCG algorithms applied to various games 

[9][10][11][12].  As can be seen from most of the researches, 

the commonly used methods for automatically generating 

content in games are based on various artificial intelligence 

techniques.  In the future, as the game industry develops and 

virtual reality contents become popular, more PCG 

algorithms based on artificial intelligence techniques are 

expected to be applied. 

 

III. PCG FOR SCROLLING-SHOOTER GAMES 

A. Test Platform: “Xhootings” Game 

 
Figure 1: Screenshots of "Xhootings" game 

 

In order to verify the proposed PCG algorithm, we 

developed a simple scrolling-shooter game called 

"Xhootings" (Fig. 1).  When the game starts, the enemy 

airplane, which is infinitely generated at intervals of 1.3 

seconds, moves down, and the objective of this game is to 

attack these enemies by shooting bullets.  The game collects 

various data needed for evolution as the user plays the game. 

When the game is started, the user deals with enemy airplanes 

which are moving with patterns created by a game designer.  

The first level starts with 6 types of basic movement patterns.  

At each level, users play until they kill 30 enemies, which are 

destroyed when they are hit three times by bullets.  The 

proposed PCG algorithm collects four types of data during 

game play, which includes the user's play time, the number of 

player’s airplanes used by the user during the play, the 

number of times each enemy has destroyed the player’s 

aircraft, the number of times each enemy has been destroyed 

by the user. 

B. Evolution Algorithm 

 
Figure 2: Overall process of our evolution algorithm 

 

When the user reaches a given goal (to kill 30 enemies) and 

ends one level, the PCG system performs a chromosome 

evolutionary algorithm to create new movement patterns of 

enemies by using the collected data.  The overall process of 

our evolution algorithm is depicted in Fig. 2.  The 

chromosome evolution process proceeds in three stages: 

evaluation, crossover, and mutation.   

In the evaluation stage, the user’s score and the fitness 

function values of all types of enemies are calculated based on 

the data collected during the previous game play.  The player's 

score determines the progress of the evolutionary algorithm 
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and the order in which the chromosomes are sorted, and the 

enemies’ fitness function values are used to choose a pair of 

chromosomes for the crossover stage.  The crossover stage 

proceeds until all the chromosomes of one generation are 

generated.  Since the number of chromosomes used in this 

study is 6, crossover occurs up to 3 times.  When the 

crossover stage is finished, the next step, mutation stage, 

proceeds.  When the mutation process is complete, the newly 

created 6 kinds of enemies appear at the next level. 

 

1) Encoding Chromosome 

The original genetic algorithm encodes the gene 

chromosomal information into a bit stream, but in this study, it 

is encoded as an array of real numbers because the data size 

required for the operation is not only small but also the 

calculation process is very simple. 

 
Figure 3: An Encoded Chromosome 

 

The chromosome of the enemy represents the total of 5 

kinds of information by genes, including moving direction, 

delay time of bullet launch, speed of movement, weapon type, 

and retreat position of an enemy.  In the case of the direction 

of movement, for example, each gene is represented by -1, 0, 

or 1, which indicates the direction in which the enemy moves 

while falling down (Table 1).  In the case of the chromosome 

in Fig. 3, the enemy continues to move to the right and falls 

down. 
Table 1: Values for Gens for Movement Direction 

Value Meaning 

1 move right 

0 in place 

-1 move left 

 

2) Evaluation 

As mentioned above, in the evaluation stage, the fitness 

function value of each enemy is calculated together with the 

score of the user's play.  First, the score for the user's play is 

calculated by taking the number of airplanes used by the user 

and the play time as parameters.  Naturally, we defined the 

score function so that the more plyer’s aircrafts are used and 

the longer the play time, the lower the score (Equation 1). 

 

 
 

In this research, if the player score is less than 30, the 

evolutionary algorithm is not performed.  If the score is 

greater than 30, the evolution direction is changed differently 

by comparing the score of the current level with that of the 

previous level.  If the player's score improves, the enemy 

evolves more strongly and vice versa. 

The fitness value is calculated based on the number of 

times each enemy has destroyed the player's aircraft and the 

number of times the enemy has been shot down by the player 

during play (Equation 2). 

 

 
 

The chromosomes whose fitness values have been 

calculated are sorted in different order according to the 

evolution direction determined by the player's play score.  

The reason is that in order to evolve the enemy to be stronger, 

the chromosomes are sorted in descending order, and in the 

opposite case, they are sorted in ascending order so as to 

differentiate the probability of selecting a pair of 

chromosomes in the next step of crossover. 

 

3) Crossover 

In this research, one generation consists of 6 chromosomes.  

Therefore, in this stage, 6 new chromosomes for a new 

generation, whether the crossover operation is performed or 

not, are generated. We set the probability of applying the 

crossover operation to 75%. 

 

 
Figure 4: An Example of the Crossover Operation 

 

Traditional genetic algorithms arbitrarily select the point at 

which the chromosome breaks (crossing point), and exchange 

all the genes behind this point on the chromosome.  However, 

in this research, we proposed an expedient encoding scheme, 

so our PCG algorithm chooses randomly both starting and 

ending positions and exchanges the genes between them. 

 

4) Mutation 

In the conventional genetic algorithm to find the optimal 

solution, the mutation rate of each gene is usually set to 0.1%.  

However, in this research, an anomalous form of mutation 

algorithm was used in consideration of the characteristics our 

proposed encoding method.  

First, the mutation probability of each chromosome was set 

to be 25%. Next, as in the crossover operation above, the 

starting and ending positions of the chromosome to which the 

mutation operation would be applied were arbitrarily 

determined.  In addition, since the meanings of each gene are 

very different from each other, the mutation method for each 

gene is also designed differently. 

 
Table 2: Mutation Range of Variable Types of Genes 

Gene Type Variation Range Limit Range 

direction -1, 0, 1 -1, 0, 1 

firing cool time -0.3 ~ 0.3 0.6 ~ 1.0 

speed -3 ~ 3 3 ~ 7 

weapon type -1, 0, 1 0, 1, 2 

retreat pos -4 ~ 4 -1or 5 ~ 11 
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Table 2 summarizes the variation range and limit range of 

each gene.  For example, the range of meaningful values of 

the gene for “direction” of movement is 0.6 to 1.0, and the 

range of values that can be varied in the variation calculation 

is any value between -0.3 and 0.3.  If the mutation results out 

of the "limit range", a compensation operation is also 

performed so that it remains within a meaningful "limit 

range.”  This process is shown in Fig. 5 as an algorithm, and 

the compensation operation is designed differently for each 

gene so that it is mutated to a meaningful value. 

 

 
Figure 5: Algorithm for the Mutation and Compensation 

 

5) New Generation 

 

 
Figure 6: Raw Data of 1st Generation 

 

 
Figure 7: Raw Data of 2nd Generation 

 

As mentioned above, in this research, we used a simple 

modified form of the genetic algorithm without using the 

traditional genetic algorithm designed to find the optimal 

solution.  As a result, even if only one cycle of evolution 

algorithm is applied, it is possible to visually discover the 

creation of an enemy that shows a new shape e of movement.  

Fig. 6 and Fig. 7 show raw data representing the 

chromosomes of the second and third generations, 

respectively. 

IV. RESULTS 

In order to verify how our proposed PCG algorithm 

generates effective movement patterns, we conducted 

experiments with two users.  One is very experienced in 

scrolling-shooter games and the other is very inexperienced.  

It is very easy to find the enemy that changes its movement 

pattern even after the end of one level, but the evolved results 

to the tenth generation are summarized in Fig. 8 to show more 

dramatic results. 

 

 
Figure 8: (a) Initial patterns, (b) patterns evolved into complex forms, (c) 

patterns evolved into simple forms 

 

Experienced users acquire the ability to quickly adapt and 

evade even the enemy moving in a complex pattern.  Thus, as 

the evolution proceeds over and over again, more complex 

patterns appear and the game becomes more difficult.  On the 

other hand, inexperienced users take a long time to adapt to a 

slightly modified pattern.  In this case, our algorithm has a 

higher probability of selecting chromosomes with lower 

fitness values, so that even if the same number of evolution is 

repeated starting from the same initial patterns, more simple 

patterns appear compared to experienced users. 

V. CONCLUSION 

In this paper, we proposed a novel movement pattern 

generation method for scrolling-shooter games using genetic 

algorithm.  The proposed algorithm generates new movement 

patterns according to the user 's play results.  In other words, it 

was implemented to give more complex missions to users who 

are clearing too easily, and to give easier missions to 

inexperienced users. 

As can be seen from the above results, applying PCG 

algorithms to the game makes it possible to generate contents 

with the difficulty level suitable for users in real time.  In 

addition, game designers can easily create and test various 

contents in advance.  Although PCG algorithms is not yet 

capable of replacing all the contents that humans design, it is 

expected that various PCG algorithms will be able to replace 

more parts in the near future. 
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